Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
medrxiv; 2024.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2024.03.15.24304277

Résumé

Introduction: The spring 2023 COVID-19 booster vaccination programme in England used both Pfizer BA.4-5 and Sanofi vaccines. All people aged 75 years or over and the clinically vulnerable were eligible to receive a booster dose. Direct comparisons of the effectiveness of these two vaccines in boosting protection against severe COVID-19 events have not been made in trials or observational data. Methods With the approval of NHS England, we used the OpenSAFELY-TPP database to compare effectiveness of the Pfizer BA.4-5 and Sanofi vaccines during the spring 2023 booster programme, between 1 April and 30 June 2023. We investigated two cohorts separately: those aged 75 or over (75+); and those aged 50 or over and clinically vulnerable (CV). In each cohort, vaccine recipients were matched on date of vaccination, COVID-19 vaccine history, age, and other characteristics. Effectiveness outcomes were COVID-19 hospital admission, COVID-19 critical care admission, and COVID-19 death up to 16 weeks after vaccination. Safety outcomes were pericarditis and myocarditis up to 4 weeks after vaccination. We report the cumulative incidence of each outcome, and compare safety and effectiveness using risk differences (RD), relative risks (RR), and incidence rate ratios (IRRs). Results 492,642 people were 1-1 matched in the CV cohort, and 673,926 in the 75+ cohort, contributing a total of 7,423,251 and 10,173,230 person-weeks of follow-up, respectively. The incidence of COVID-19 hospital admission was higher for Sanofi than for Pfizer BA.4-5. In the CV cohort, 16-week risks per 10,000 people were 22.3 (95%CI 20.4 to 24.3) for Pfizer BA.4-5 and 26.4 (24.4 to 28.7) for Sanofi, with an IRR of 1.19 (95%CI 1.06 to 1.34). In the 75+ cohort, these were 17.5 (16.1 to 19.1) for Pfizer BA.4-5 and 20.4 (18.9 to 22.1) for Sanofi, with an IRR of 1.18 (1.05-1.32). These findings were similar across all pre-specified subgroups. More severe COVID-19 related outcomes (critical care admission and death), and safety outcomes at 4 weeks, were rare in both vaccines so we could not reliably compare effectiveness of the two vaccines. Conclusion This observational study comparing effectiveness of Pfizer BA.4-5 and Sanofi vaccine during the spring 2023 programme in England in the two main eligible cohorts - people aged 75 and over and in clinically vulnerable people - found some evidence of superior effectiveness against COVID-19 hospital admission for Pfizer BA.4-5 compared with Sanofi within 16 weeks after vaccination.


Sujets)
Péricardite , Myocardite , Mort , COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.12.06.23299602

Résumé

Background: COVID-19 is associated with subsequent mental illness in both hospital- and population-based studies. Evidence regarding effects of COVID-19 vaccination on mental health consequences of COVID-19 is limited. Methods: With the approval of NHS England, we used linked electronic health records (OpenSAFELY-TPP) to conduct analyses in a 'pre-vaccination' cohort (17,619,987 people) followed during the wild-type/Alpha variant eras (January 2020-June 2021), and 'vaccinated' and 'unvaccinated' cohorts (13,716,225 and 3,130,581 people respectively) during the Delta variant era (June-December 2021). We estimated adjusted hazard ratios (aHRs) comparing the incidence of mental illness after diagnosis of COVID-19 with the incidence before or without COVID-19. Outcomes: We considered eight outcomes: depression, serious mental illness, general anxiety, post-traumatic stress disorder, eating disorders, addiction, self-harm, and suicide. Incidence of most outcomes was elevated during weeks 1-4 after COVID-19 diagnosis, compared with before or without COVID-19, in each cohort. Vaccination mitigated the adverse effects of COVID-19 on mental health: aHRs (95% CIs) for depression and for serious mental illness during weeks 1-4 after COVID-19 were 1.93 (1.88-1.98) and 1.42 (1.24-1.61) respectively in the pre-vaccination cohort and 1.79 (1.68-1.91) and 2.21 (1.99-2.45) respectively in the unvaccinated cohort, compared with 1.16 (1.12-1.20) and 0.91 (0.84-0.98) respectively in the vaccinated cohort. Elevation in incidence was higher, and persisted for longer, after hospitalised than non-hospitalised COVID-19. Interpretation: Incidence of mental illness is elevated for up to a year following severe COVID-19 in unvaccinated people. Vaccination mitigates the adverse effect of COVID-19 on mental health. Funding: Medical Research Council (MC_PC_20059) and NIHR (COV-LT-0009).


Sujets)
Troubles anxieux , Trouble dépressif , Déficience intellectuelle , COVID-19 , Troubles de stress traumatique , Troubles de l'alimentation
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.04.22283762

Résumé

Quantifying the waning effectiveness of second COVID-19 vaccination beyond six months and against the omicron variant is important for scheduling subsequent doses. With the approval of NHS England, we estimated effectiveness up to one year after second dose, but found that bias in such estimates may be substantial.


Sujets)
COVID-19
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.11.16.22282396

Résumé

Background: Kidney disease is a key risk factor for COVID-19-related mortality and suboptimal vaccine response. Optimising vaccination strategies is essential to reduce the disease burden in this vulnerable population. Methods: With the approval of NHS England, we performed a retrospective cohort study to estimate the comparative effectiveness of schedules involving AZD1222 (AZ; ChAdOx1-S) and BNT162b2 (BNT) among people with kidney disease. Using linked primary care and UK Renal Registry records in the OpenSAFELY-TPP platform, we identified adults with stage 3-5 chronic kidney disease, dialysis recipients, and kidney transplant recipients. We used Cox proportional hazards models to compare COVID-19-related outcomes and non-COVID-19 death after two-dose (AZ-AZ vs BNT-BNT) and three-dose (AZ-AZ-BNT vs BNT-BNT-BNT) schedules. Findings: After two doses, incidence during the Delta wave was higher in AZ-AZ (n=257,580) than BNT-BNT recipients (n=169,205; adjusted hazard ratios [95% CIs] 1.43 [1.37-1.50], 1.59 [1.43-1.77], 1.44 [1.12-1.85], and 1.09 [1.02-1.17] for SARS-CoV-2 infection, COVID-19-related hospitalisation, COVID-19-related death, and non-COVID-19 death, respectively). Findings were consistent across disease subgroups, including dialysis and transplant recipients. After three doses, there was little evidence of differences between AZ-AZ-BNT (n=220,330) and BNT-BNT-BNT recipients (n=157,065) for any outcome during a period of Omicron dominance. Interpretation: Among individuals with moderate-to-severe kidney disease, two doses of BNT conferred stronger protection than AZ against SARS-CoV-2 infection and severe disease. A subsequent BNT dose levelled the playing field, emphasising the value of heterologous RNA doses in vulnerable populations.


Sujets)
COVID-19 , Insuffisance rénale chronique , Maladies du rein , Mort
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.14.22276391

Résumé

BackgroundKidney disease is a significant risk factor for COVID-19-related mortality. Achieving high COVID-19 vaccine coverage among people with kidney disease is therefore a public health priority. MethodsWith the approval of NHS England, we performed a retrospective cohort study using the OpenSAFELY-TPP platform. Individual-level routine clinical data from 24 million people in England were included. A cohort of individuals with stage 3-5 chronic kidney disease (CKD) or receiving renal replacement therapy (RRT) at the start of the COVID-19 vaccine roll-out was identified based on evidence of reduced estimated glomerular filtration rate or inclusion in the UK Renal Registry. Individual-level factors associated with vaccine uptake were explored via Cox proportional hazards models. Results948,845 people with stage 3-5 CKD or receiving RRT were included. Cumulative vaccine coverage as of 11th May 2022 was 97.5%, 97.0%, and 93.5% for doses 1, 2, and 3, respectively, and 61.1% among individuals with one or more indications for receipt of a fourth dose. Delayed 3-dose vaccine uptake was associated with non-White ethnicity, social deprivation, and severe mental illness - associations that were consistent across CKD stages and in RRT recipients. Similar associations were observed for 4-dose uptake, which was also delayed among care home residents. ConclusionAlthough high primary and booster dose coverage has been achieved among people with kidney disease in England, key disparities in vaccine uptake remain across demographic groups. Identifying how to address these disparities remains a priority to reduce the risk of severe disease in this vulnerable patient group.


Sujets)
COVID-19 , Insuffisance rénale chronique , Maladies du rein , Privation de sommeil
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22276026

Résumé

Background The UK COVID-19 vaccination programme delivered its first "booster" doses in September 2021, initially in groups at high risk of severe disease then across the adult population. The BNT162b2 Pfizer-BioNTech vaccine was used initially, with Moderna mRNA-1273 subsequently also used. Methods We used the OpenSAFELY-TPP database, covering 40% of English primary care practices and linked to national coronavirus surveillance, hospital episodes, and death registry data, to estimate the effectiveness of boosting with BNT162b2 compared with no boosting in eligible adults who had received two primary course vaccine doses between 16 September and 16 December 2021 when the Delta variant of SARS-CoV-2 was dominant. Follow up was for up to 10 weeks. Each booster recipient was matched with an unboosted control on factors relating to booster priority status and prior immunisation. Additional factors were adjusted for in Cox models estimating hazard ratios (HRs). Outcomes were positive SARS-CoV-2 test, COVID-19 hospitalisation, COVID-19 death and non-COVID-9 death. Booster vaccine effectiveness was defined as 1-HR. Results Among 4,352,417 BNT162b2 booster recipients matched with unboosted controls, estimated effectiveness of a booster dose compared with two doses only was 50.7% (95% CI 50.1-51.3) for positive SARS-CoV-2 test, 80.1% (78.3-81.8) for COVID-19 hospitalisation, 88.5% (85.0-91.1) for COVID-19 death, and 80.3% (79.0-81.5) for non-COVID-19 death. Estimated effectiveness was similar among those who had received a BNT162b2 or ChAdOx1-S two-dose primary vaccination course, but effectiveness against severe COVID-19 was slightly lower in those classified as clinically extremely vulnerable (76.3% (73.1-79.1) for COVID-19 hospitalisation, and 85.1% (79.6-89.1) for COVID-19 death). Estimated effectiveness against each outcome was lower in those aged 18-65 years than in those aged 65 and over. Conclusion Our findings are consistent with strong protection of BNT162b2 boosting against positive SARS-CoV-2 test, COVID-19 hospitalisation, and COVID-19 death.


Sujets)
COVID-19 , Mort
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.23.22272804

Résumé

Summary Background The rate at which COVID-19 vaccine effectiveness wanes over time is crucial for vaccination policies, but is incompletely understood with conflicting results from different studies. Methods This cohort study, using the OpenSAFELY-TPP database and approved by NHS England, included individuals without prior SARS-CoV-2 infection assigned to vaccines priority groups 2-12 defined by the UK Joint Committee on Vaccination and Immunisation. We compared individuals who had received two doses of BNT162b2 or ChAdOx1 with unvaccinated individuals during six 4-week comparison periods, separately for subgroups aged 65+ years; 16-64 years and clinically vulnerable; 40-64 years and 18-39 years. We used Cox regression, stratified by first dose eligibility and geographical region and controlled for calendar time, to estimate adjusted hazard ratios (aHRs) comparing vaccinated with unvaccinated individuals, and quantified waning vaccine effectiveness as ratios of aHRs per-4-week period. The outcomes were COVID-19 hospitalisation, COVID-19 death, positive SARS-CoV-2 test, and non-COVID-19 death. Findings The BNT162b2, ChAdOx1 and unvaccinated groups comprised 1,773,970, 2,961,011 and 2,433,988 individuals, respectively. Waning of vaccine effectiveness was similar across outcomes and vaccine brands: e.g. in the 65+ years subgroup ratios of aHRs versus unvaccinated for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test ranged from 1.23 (95% CI 1.15-1.32) to 1.27 (1.20-1.34) for BNT162b2 and 1.16 (0.98-1.37) to 1.20 (1.14-1.27) for ChAdOx1. Despite waning, rates of COVID-19 hospitalisation and COVID-19 death were substantially lower among vaccinated individuals compared to unvaccinated individuals up to 26 weeks after second dose, with estimated aHRs <0.20 (>80% vaccine effectiveness) for BNT162b2, and <0.26 (>74%) for ChAdOx1. By weeks 23-26, rates of SARS-CoV-2 infection in fully vaccinated individuals were similar to or higher than those in unvaccinated individuals: aHRs ranged from 0.85 (0.78-0.92) to 1.53 (1.07-2.18) for BNT162b2, and 1.21 (1.13-1.30) to 1.99 (1.94-2.05) for ChAdOx1. Interpretation The rate at which estimated vaccine effectiveness waned was strikingly consistent for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test, and similar across subgroups defined by age and clinical vulnerability. If sustained to outcomes of infection with the Omicron variant and to booster vaccination, these findings will facilitate scheduling of booster vaccination doses.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.08.21265312

Résumé

Background: Updatable understanding of the onset and progression of individuals COVID-19 trajectories underpins pandemic mitigation efforts. In order to identify and characterize individual trajectories, we defined and validated ten COVID-19 phenotypes from linked electronic health records (EHR) on a nationwide scale using an extensible framework. Methods: Cohort study of 56.6 million people in England alive on 23/01/2020, followed until 31/05/2021, using eight linked national datasets spanning COVID-19 testing, vaccination, primary & secondary care and death registrations data. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity using a combination of international clinical terminologies (e.g. SNOMED-CT, ICD-10) and bespoke data fields; positive test, primary care diagnosis, hospitalisation, critical care (four phenotypes), and death (three phenotypes). Using these phenotypes, we constructed patient trajectories illustrating the transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. Findings: We identified 3,469,528 infected individuals (6.1%) with 8,825,738 recorded COVID-19 phenotypes. Of these, 364,260 (11%) were hospitalised and 140,908 (4%) died. Of those hospitalised, 38,072 (10%) were admitted to intensive care (ICU), 54,026 (15%) received non-invasive ventilation and 21,404 (6%) invasive ventilation. Amongst hospitalised patients, first wave mortality (30%) was higher than the second (23%) in non-ICU settings, but remained unchanged for ICU patients. The highest mortality was for patients receiving critical care outside of ICU in wave 1 (51%). 13,083 (9%) COVID-19 related deaths occurred without diagnoses on the death certificate, but within 30 days of a positive test while 10,403 (7%) of cases were identified from mortality data alone with no prior phenotypes recorded. We observed longer patient trajectories in the second pandemic wave compared to the first. Interpretation: Our analyses illustrate the wide spectrum of severity that COVID-19 displays and significant differences in incidence, survival and pathways across pandemic waves. We provide an adaptable framework to answer questions of clinical and policy relevance; new variant impact, booster dose efficacy and a way of maximising existing data to understand individuals progression through disease states.


Sujets)
COVID-19 , Mort
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.13.21264937

Résumé

Background: The UK COVID-19 vaccination programme delivered both the BNT162b2 mRNA (Pfizer-BioNTech) and the ChAdOx1 (Oxford-AstraZeneca) vaccines during overlapping periods, providing a rare opportunity to emulate a trial that directly compares both vaccines using routinely-collected NHS data. Frontline Health and Social Care workers comprise a useful population to assess comparative effectiveness due to early vaccine eligibility and relatively high post-vaccination transmission risk due to occupational exposure. Methods: With the approval of NHS England we used the OpenSAFELY-TPP database, covering 40% of GP practices in England and linked to national coronavirus surveillance, hospital episodes, and death registry data, to compare the effectiveness of ChAdOx1 versus BNT162b2 in 1/3 million health and social care workers vaccinated between 4 January and 28 February 2021. Recipients were followed-up for 20 weeks. Second-dose effects were estimated under an intention-to-treat strategy. Primary outcomes were recorded SARS-CoV-2 infection, COVID-19-related accident and emergency attendance, and COVID-19-related hospital admission. Results: The cumulative incidence of each outcome was similar for both vaccines during the first 20 weeks post-vaccination. The cumulative incidence of recorded SARS-CoV-2 infection 6 weeks after vaccination with BNT162b2 was 19.2 per 1000 people (95%CI 18.6 to 19.7) and with ChAdOx1 was 18.9 (95%CI 17.6 to 20.3), representing a difference of -0.24 per 1000 people (95%CI -1.71 to 1.22). The difference in the cumulative incidence of COVID-19 accident and emergency attendance at 6 weeks was 0.01 per 1000 people (95%CI -0.27 to 0.28). For COVID-19 hospital admission, this difference was 0.03 per 1000 people (95%CI -0.22 to 0.27). Conclusion: In this cohort of healthcare workers where we would not anticipate vaccine type to be related to health status, we found no substantial differences in the incidence of SARS-CoV-2 infection or COVID-19 disease up to 20 weeks after vaccination. Incidence dropped sharply after 3-4 weeks and there were very few COVID-19 hospital attendance and admission events after this period. This is in line with expected onset of vaccine-induced immunity, and suggests strong protection against COVID-19 disease for both vaccines.


Sujets)
COVID-19 , Mort
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.26.21262523

Résumé

ObjectiveTo estimate pairwise associations between administration of tocilizumab, sarilumab and usual care or placebo with 28-day mortality, in COVID-19 patients receiving concomitant corticosteroids and non-invasive or mechanical ventilation, based on all available direct and indirect evidence. MethodsEligible trials randomized hospitalized patients with COVID-19 that compared either interleukin-6 receptor antagonist with usual care or placebo in a recent prospective meta-analysis (27 trials, 10930 patients) or that directly compared tocilizumab with sarilumab. Data were restricted to patients receiving corticosteroids and either non-invasive or invasive ventilation at randomization. Pairwise associations between tocilizumab, sarilumab and usual care or placebo for all-cause mortality 28 days after randomization were estimated using a frequentist contrast-based network meta-analysis of odds ratios (ORs), implementing multivariate fixed-effects models that assume consistency between the direct and indirect evidence. ResultsOne trial (REMAP-CAP) was identified that directly compared tocilizumab with sarilumab and supplied results on all-cause mortality at 28-days. This network meta-analysis was based on 898 eligible patients (278 deaths) from REMAP-CAP and 3710 eligible patients from 18 trials (1278 deaths) from the prospective meta-analysis. Summary ORs were similar for tocilizumab [0.82 [0.71-0.95, P=0.008]] and sarilumab [0.80 [0.61-1.04, P=0.09]] compared with usual care or placebo. The summary OR for 28-day mortality comparing tocilizumab with sarilumab was 1.03 [95%CI 0.81-1.32, P=0.80]. The P value for the global test for inconsistency was 0.28. ConclusionAdministration of either tocilizumab or sarilumab was associated with lower 28-day all-cause mortality compared with usual care or placebo. The association is not dependent on the choice of interleukin-6 receptor antagonist.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche